Investigating Air Pollution Emissions Exposure in Greater Cairo

Rana Alaa Abbass1,2, Prashant Kumar1, Ahmed El-Gendy2

1University of Surrey, United Kingdom
2The American University in Cairo, Egypt
Agenda

• Motivation & Goal
• MENA Region
• Exposure Assessment
• Control Scenarios
• A Global View
Research Motivation

- Cairo 6th largest Megacity globally
- 20% of Egyptian population in 0.2% of Egypt’s area
- Urban growth > Development + Control
- Greater Cairo has 3.5m vehicles (37% of Egypt)
- Unfavorable geography and meteorological conditions
- 20m direct receptors - emissions >WHO limits
- Air pollution → the invisible disease
- Extent of Problem? What is being done about it?

First – The Middle East and North African Region

An overview of monitoring and reduction strategies for health and climate change related emissions in the Middle East and North Africa region

Rana Alaa Abbassa, Prashant Kumara,*, Ahmed El-Gendyb

a Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom

b Department of Environmental Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
Health Emissions Exposure Assessment in Transport Microenvironments
Megacity – Cairo
High Activity Zones

Zone 1
Heliopolis

Zone 2
Maadi

Zone 3
New Cairo

Zone 4
Downtown

Zone 5
Mohandeseen

Zone 6
6th of October

20 Nov 2019
@AirPollSurrey surrey.ac.uk/gcare
Vehicle Transport

Modal Share of Motorized Trips (%)

- Car + Taxi
- Bus + Minibus
- Light Rail Tram
- Metro

Years
- 1970
- 1975
- 1980
- 1985
- 1990
- 1995
- 2000

Modal Share of Motorized Trips (%)

- Car + Taxi: 70%
- Bus + Minibus: 1%
- Light Rail Tram: 9%
- Metro: 1%
- Public Transport: 1%
- Trucks: 9%
- Buses: 1%
- Others: 19%
- Private cars: 70%

(Huzayyin et al. 2009)

Vehicle Type Distribution in GC area

(CAPMAS 2017)
Data Collection Plan

Settings of Transport: S1: Open window, S2: Closed Window, S3: AC On

Sessions: Morning rush-hour, Evening rush-hour, Weekend

Parameters: \(\text{PM}_{2.5}, \text{PM}_{10}, \text{CO}, \text{NO}_2 \)

Areas of Focus around Greater Cairo:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Main Street</th>
<th>Residential Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1 Heliopolis</td>
<td>Nozha st. + Thawra st.</td>
<td>Korba villas</td>
</tr>
<tr>
<td>Z2 Al-Maadi</td>
<td>Al-Nasr st. + Al-Lasilki st.</td>
<td>Degla + CAC school</td>
</tr>
<tr>
<td>Z3 New Cairo</td>
<td>90 st.</td>
<td>Al-Rehab area</td>
</tr>
<tr>
<td>Z4 Downtown</td>
<td>Tahrir Sq.</td>
<td>Falaki st.</td>
</tr>
<tr>
<td>Z5 El-Mohandesseen</td>
<td>Al-Dokki st.</td>
<td>Seliman Riad st.</td>
</tr>
<tr>
<td>Z6 6th of October City</td>
<td>Mehwar st.</td>
<td>Dr. Khairy El-Samar st.</td>
</tr>
</tbody>
</table>

Cross-city roads

- Autostrad
- 6th of October Bridge
- Ring Road

Preliminary Results

Transport Emissions Control Scenarios
Instruments to address congestion:

- Behavioral – staggering work start times
- Fiscal – subsidy removal
- Investment – public transport + road capacity
- Regulatory – technical + economic
- Urban Planning

Countries successfully addressing congestion adopted a coherent package combining several of those instruments.

(About Ali and Thomas 2011)
National Efforts

- Banning leaded gasoline
- Replace old taxis + scrapping programs
- Fuel alternatives eg. CNG taxis
- New roads
- Public transport improvements
- I/M programs
- Subsidy removal

→ Inconsistent efforts + increase in traffic > control instruments implementation

Future Work
CArE-Cities Experiment

Latin America

Middle-East

South-East Asia

Africa
A Global View on Transport
Business As Usual Costs

10% Economic loss of GDP

$\text{\$\$\$}$ Contribute to more than

1.24m Traffic fatalities every year

2.1m premature deaths from air pollution every year

Transport GHG emissions increase by 80% by 2050

(Mahendra 2016)
Technology-Driven Transport

BRT AND BUSWAY SYSTEMS IN THE WORLD

Evolution of the number of cities per year

Global Growth of Car Sharing 2000-2012

(Mahendra 2016)
Conclusions & Challenges

- Regional Monitoring + ILR + Control – inconsistent
- Transport has opportunities for pollution reduction
- Cairo suffers air pollution (urbanization, modal shift, heavy subsidies, environmental conditions)
- High pollutant concentrations under construction zones and in evening rush hour
- Data availability – an obstacle
- Highest Exposure during EP, S1 runs
- Novelty: no scientific studies on matter (regional, exposure, control scenario assessment and nexus)
Acknowledgements

Professor Prashant Kumar & Dr Ahmed El-Gendy
RETINA and CArE-Cities
Al-Nada Scientific team
Field campaign team